Analyzing the Interest Rate

- Determination of: \(i = \text{nominal interest rate} \)
- Model of interest rate determination
 - DD-SS of Assets: Loanable Funds Framework
 - Liquidity Preference Framework
- The way we’ll go about each model
 - Setup of the model
 - Comparative Statics: \textit{ceteris paribus} condition
 - Implications of the model

Approach to Explain \(i \)

- Price of bond and \(i \) are negatively related
 - So, explanation of Price of bond → explain \(i \)
- The general approach:
 - Asset price → theory of interest rate determination
- Models of asset demand and supply
- Interest rates on different securities move together
 - we start with one type of security & one interest rate
 - DD-SS model for one year discount bond
 - Explain comovements of various interest rates (later)
- An alternative model: Liquidity preference model
Demand-Supply Model of Asset Pricing

- Demand for assets come from household (provider of funds)
- 2 decisions:
 - Whether to buy and hold asset ‘a’
 - Whether to buy another asset ‘b’ instead of ‘a’
- Supply of assets come from firms (need funds)
- Demand and supply determine asset price

Asset Demand

- Asset is a store of values
- Asset demand function,
 \[
 \text{Asset demand} = f \left(\begin{array}{c}
 \text{Asset price,} \\
 \text{Expected return,} \\
 \text{Wealth,} \\
 \text{Risk,} \\
 \text{Liquidity}
 \end{array} \right) \text{ shift factors on (price,quantity) plane}
 \]
- Demand curve on (price, quantity) plane
 - Changes in price
 → movement along the curve (law of demand)
 - Changes in other determinants of demand
 → shift of the curve
Determinants of Asset Demand

- **Wealth**
 - Availability of funds

- **Expected Return**
 - Expected return =
 - (probability of state 1 happening) x (return in state 1) + (probability of state 2 happening) x (return in state 2)
 - ex:
 - Expected return last year: 0.5 x10 + 0.5 x5% = 7.5%
 - Expected return this year: 0.5 x15% + 0.5 x5% = 10%

- **Risk**
 - Compare two assets with same expected return, one with higher risk
 - asset ‘a’: 0.5 x15% + 0.5 x5% = 10%
 - asset ‘b’: 0.5 x10% + 0.5 x10% = 10% [risk free]
 - Hollywood and sports clichés

- **Liquidity**
 - Depth and breadth of the market
 - Lower transaction cost
 - Ex: a house is not a very liquid asset
Determinants of Asset Demand

Table 1: Response of the Quantity of an Asset Demanded to Changes in Wealth, Expected Returns, Risk, and Liquidity

<table>
<thead>
<tr>
<th>Variable</th>
<th>Change in Variable</th>
<th>Change in Quantity Demanded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wealth</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Expected return relative to other assets</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Risk relative to other assets</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Liquidity relative to other assets</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>

Note: Only increases in the variables are shown. The effect of decreases in the variables on the change in demand would be the opposite of those indicated in the rightmost column.

Bond Price and Interest Rate

- One year discount bond,

\[i = \frac{F - P}{P} \]

- \(i \) = interest rate = yield to maturity
- \(F \) = face value = $1000
- \(P \) = price of the bond

- So, if \(P=950 \), \(i=5.3\% \)
- \(P=750 \), \(i=33.0\% \)
Bond Price & Quantity Demanded: An Example

- Law of demand (an example)

 Point A: \(P = $950, B^d = $100 \text{ billion}, \ i = 5.3\% \)

 Point B: \(P = $900, B^d = $200 \text{ billion}, \ i = 11.1\% \)

 Point C: \(P = $850, B^d = $300 \text{ billion}, \ i = 17.6\% \)

 Point D: \(P = $800, B^d = $400 \text{ billion}, \ i = 25.0\% \)

 Point E: \(P = $750, B^d = $500 \text{ billion}, \ i = 33.0\% \)

- Movements: \{P↑, B^d↓, i↓\}, \{P↓, B^d↑, i↑\}
- Demand curve is \(B^d \) connecting A, B, C, D, E

Bond Demand on (price, quantity) plane

Bond Demand: \(B^d \)

- Demand curve is \(B^d \) connecting A, B, C, D, E
- \(i \) goes the opposite direction to \(P \)
- \(B^d \) downward sloping
- Positive relationship between \(B^d \) and \(i \): reward of lending is \(i \)
Bond Supply on (price, quantity) plane

Bond Supply: \(B^s \)
- Higher price of bond encourages more bonds to be issued
- \(B^s \) upward sloping
- Negative relationship between \(B^s \) and \(i \): cost of borrowing is \(i \)

Bond Market Equilibrium

Market Equilibrium
- Occurs when \(B^d = B^s \), at \(P^* = $850 \), \(i^* = 17.6\% \)
- When \(P = $950 \), and \(i = 5.3\% \), \(B^d > B^s \)
 (excess supply): \(P \downarrow \) to \(P^* \), \(i \uparrow \) to \(i^* \)
- When \(P = $750 \), and \(i = 33.0\% \), \(B^d < B^s \)
 (excess demand): \(P \uparrow \) to \(P^* \), \(i \downarrow \) to \(i^* \)
Demand Shift: Wealth

- wealth $\uparrow \Rightarrow \begin{cases} \text{demand for bonds } \uparrow \text{ at the same price} \\ \text{or, supply of loanable funds } \uparrow \text{ at the same } i \\ \Rightarrow B^d \text{ curve shifts right} \\ \Rightarrow \downarrow i, \uparrow \text{ equilibrium quantity of bonds} \end{cases}$

- Factors that change wealth (and thereby B^d)
 - Business cycle expansion $\rightarrow \uparrow$ wealth
 - Recessions $\rightarrow \downarrow$ wealth
 - \uparrow MPS $\rightarrow \uparrow$ wealth
 - \downarrow MPS $\rightarrow \downarrow$ wealth

Demand Shift: Risk

- risk $\uparrow \Rightarrow \begin{cases} \text{demand for bonds } \downarrow \text{ at the same price} \\ \text{or, supply of loanable funds } \downarrow \text{ at the same } i \\ \Rightarrow B^d \text{ curve shifts left} \\ \Rightarrow \uparrow i, \downarrow \text{ equilibrium quantity of bonds} \end{cases}$

- Price of bond become volatile $\rightarrow \uparrow$ risk of bond
- Price of alternative asset (e.g. stock) becomes less volatile $\rightarrow \uparrow$ risk of bond
Demand Shift: Liquidity

liquidity \uparrow \Rightarrow \begin{align*}
&\text{demand for bonds } \uparrow \text{ at the same price} \\
&\text{or, supply of loanable funds } \uparrow \text{ at the same } i \\
\Rightarrow &\quad B^d \text{ curve shifts right} \\
\Rightarrow &\quad \downarrow i, \; \uparrow \text{equilibrium quantity of bonds}
\end{align*}

\blacksquare More people trading in the bond market
\rightarrow liquidity of bond \uparrow

\blacksquare Rise of brokerage commission of stock trading
\rightarrow compared to stock liquidity of bond \uparrow

Demand Shift: Expected Return (R_e)

Expected return \uparrow \Rightarrow \begin{align*}
&\text{demand for bonds } \uparrow \text{ at the same price} \\
&\text{or, supply of loanable funds } \uparrow \text{ at the same } i \\
\Rightarrow &\quad B^d \text{ curve shifts right} \\
\Rightarrow &\quad \downarrow i, \; \uparrow \text{equilibrium quantity of bonds}
\end{align*}

\blacksquare What factors affect R_e

\square R_e on other assets
\square Expected inflation (π^e)
\square Expected future interest rate
Demand Shift: Expected Return
Relative to Other Assets

- Expected return from bonds remains constant but
 Expected return from other (alternative) assets ↑
 → expected return from bonds relative to other assets ↓
 → demand for bonds ↓
 → demand for bonds curve shift left
 → ↑ \(i \), ↓ equilibrium quantity of bonds

Example: Optimism in the stock market
 → ↑ expected return on stocks (an alternative to bonds)

Demand Shift: Expected Inflation

- Since bonds are not real goods and services
 how does expected inflation affect it?
 → through real assets (house, automobiles)

- Increase in \(\Pi^e \)
 → ↑ expected capital gain on real assets
 → \(R^e \) on real assets relative to bonds ↑
 → demand for bonds ↓
 → demand for bonds curve shift left
 → ↑ \(i \), ↓ equilibrium quantity of bonds
Demand Shift: Expected Return
Expected Future Interest Rate

- Time sequence

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>maturity (at T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t+1</td>
<td></td>
</tr>
<tr>
<td>(i_t, P_t)</td>
<td>(i_{t+1}, P_{t+1})</td>
<td>(i_T, F_T)</td>
</tr>
</tbody>
</table>

- For a 1-year bond i and \(R^e \) are the same and future interest rate doesn’t matter current i
- When holding period=T, again, future interest doesn’t matter
- \(R^e \) may differ from i for other (long term) bonds as,

\[
R^e = \frac{C + P'_{t+1} - P_t}{P_t}
\]

→ ↑ expected future interest rate
→ ↓ expected future bond price → ↓ expected capital gain
→ \(R^e \) ↓

Demand Shift: Expected Return
Expected Future Interest Rate

- Expected future interest rate (in long term bonds) ↑
 → expected future price (of longer term) bonds ↓
 → expected return on bonds ↓
 → dd for bonds in the current period ↓
 → current i ↑
- Expected future interest rate (in long term bonds) ↓
 → expected future price (of longer term) bonds ↑
 → expected return on bonds ↑
 → dd for bonds in the current period ↑
 → current i ↓
Shift in Supply of Bonds

- **Profitability of investment opportunities ↑**
 - → firms more willing to borrow
 - → supply of bonds (dd for loanable funds) ↑

 Ex: Business cycle expansion → ↑ supply of bonds

- **Expected inflation ↑**
 - → real interest rate falls
 - → real cost of borrowing falls
 - → supply of bonds (dd for loanable funds) ↑

- **US treasury issues bonds to finance govt. deficit**

 Ex: Government deficit → ↑ supply of bonds
Shifts in the Bond Supply Curve

- ↑ Profitability of Investment Opportunities
- ↑ Expected Inflation (π^e)
- ↑ Government Deficits

Changes in π^e: the Fisher Effect

If $\pi^e \uparrow$
- Relative $R^e \downarrow$, B^d shifts in to left
- Real cost of borrowing ↓, $B^s \uparrow$, B^s shifts out to right
- $P \downarrow$, $i \uparrow$

So, (π^e, i) should move together
Fisher Effect Evidence in US

Business Cycle Expansion

- Wealth ↑, \(B^d ↑, B^f \) shifts out to right
- Profitable Investment opportunities ↑, \(B^f ↑, B^d \) shifts out to right
- If \(B^f \) shifts more than \(B^d \) then \(P \downarrow, i \uparrow \)

Do we see \(i \uparrow \) with expansion and vice versa?

- Interest Rate, \(i \)
 - \((i\) increases \(\downarrow \))
- Price of Bonds, \(P \)
 - \((P\) increases \(↑ \))

Diagram showing the relationship between the price of bonds, interest rates, wealth, and investment opportunities during business cycle expansion.
Business Cycles & Interest Rates

Interest rates rose during business cycle expansions, fell during recessions

Converting to Loanable Funds Framework

Just rotating the demand curve
The Loanable Funds Framework

- Demand for bonds = Supply of loanable funds
- Supply of bonds = Demand for loanable funds
- Not restricted to 1-yr discount bonds

Liquidity Preference:
An Alternative Model

Keynes’s Assumption: Two Categories of Assets to store Wealth, \{Money, Bonds\}

i.e., total available wealth: \[W = M^s + B^s \]

Implication of the assumption:

- Budget Constraint: \[B^d + M^d = W \]
- Therefore: \[B^d + M^d = M^s + B^s \]

Subtract \((M^d + B^s)\) both sides: \[B^d - B^s = M^s - M^d \]

Money Market Equilibrium: \[M^d = M^s \]

but, \[M^d = M^s \Rightarrow B^d = B^s \]

i.e. [money market equilibrium] \[\Rightarrow\]

[bond market also in equilibrium]
Liquidity Preference Model
Derivation of Money Demand Curve

- Why do people hold money?
 - Transaction demand for money
 - Precautionary demand for money
 - Speculative demand for money
- Keynes assumption: return from money = 0
- Return on bonds is i. Thus, opportunity cost of holding money is i.
- As $i \uparrow$, relative R_e on money ↓ (equivalently, opportunity cost of money ↑) ⇒ M^d ↓
- Demand curve for money has a downward slope on {interest rate, quantity of money} plane

Liquidity Preference Model
Derivation of Money Supply Curve

- The central bank controls M^s
- It is a fixed amount (exogenous)
- M^s curve is a vertical line
Money Market Equilibrium

Market Equilibrium
1. Occurs when \(M^d = M^s \), at \(i^* = 15\% \)
2. If \(i = 25\% \), \(M^s > M^d \) (excess supply): Price of bonds ↑, \(i \) ↓ to \(i^* = 15\% \)
3. If \(i = 5\% \), \(M^d > M^s \) (excess demand): Price of bonds ↓, \(i \) ↑ to \(i^* = 15\% \)

Rise in Income or the Price Level

1. Income (or P level) ↑, \(M^d ↑ \), \(M^d \) shifts out to right
2. \(M^d \) unchanged, \(i^* \) rises from \(i_1 \) to \(i_2 \)

Income ↑ → ↑ demand more money to buy more stuff
Price level ↑ → ↑ demand more money to buy the same stuff
A Note on Business Cycles

- Business cycle expansion
 - increase in income levels
 - increase in interest rates
 - clear prediction by the liquidity preference model

- In Loanable funds model the prediction is not clear

Rise in Money Supply

1. $M^s \uparrow$, M^s shifts out to right
2. M^d unchanged
3. i^* falls from i_1 to i_2
Liquidity Preference vs Loanable Funds Model: Similarities

- **Loanable funds**: equating supply and demand for bonds
- **Liquidity preference**: equating supply and demand for money (which is equivalent to equating supply and demand for bonds)
- Most (but not all) predictions are similar
Liquidity Preference vs Loanable Funds Model: Differences

- **Liquidity preference**: has only two assets, hence ignores effects of expected returns from real assets (e.g. house) on interest rate.
- **Loanable funds**: easier to use when addressing the effects of expected inflation.
- **Liquidity preference**: easier to use when addressing effects of changes in income, the price level, and the supply of money.